Synchronization of oscillators: Feasibility and Non-local analysis

Julien Hendrickx & Florian Dörfler

A Brief History of Sync

- Sync experiments with coupled pendulum clocks [C. Huygens, 1665]
- Sync in mathematical biology [A. Winfree '80, S.H. Strogatz '03, ...]
- Sync in physics and chemistry [Y. Kuramoto '83, M. Mézard et al. '87...]
- Sync in neural networks [F.C. Hoppensteadt and E.M. Izhikevich '00, ...]
- Sync in complex networks [C.W. Wu '07, S. Bocaletti '08, . . .]
- ... and numerous technological applications [F. Dörfler and F. Bullo, '14]

Coupled Phase Oscillators

∃ various models of oscillators & interactions

Today: canonical coupled oscillator model

[A. Winfree '67, Y. Kuramoto '75]

Coupled Kuramoto oscillator model:

$$\dot{\theta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$

- ▶ *n* oscillators with phase $\theta_i \in \mathbb{S}^1$
- **non-identical** natural frequencies $\omega_i \in \mathbb{R}^1$
- elastic **coupling** with strength $a_{ij} = a_{ji}$
- undirected & connected graph $G = (\mathcal{V}, \mathcal{E}, A)$

Problem I: Existence of Synchronization?

Synchronization is a **trade-off**: coupling vs. heterogeneity

$$\dot{\theta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$

coupling small & $|\omega_i - \omega_j|$ large \Rightarrow incoherence & no sync

coupling large & $|\omega_i - \omega_j|$ small \Rightarrow coherence & frequency sync

Existence sync trajectory ⇔ solution to nonlinear system of equations

Some central questions:

(still after 45 years of work)

- quantify "coupling" vs. "heterogeneity"
- necessary & sufficient conditions

Problem II: Region of attraction?

$$\dot{\theta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$

If frequency synchronized trajectory $\theta_i(t) = \theta_i^0 + \omega_{sync} t$ $\forall i$ How large is the **basin of attraction**?

Symmetry
$$\Rightarrow \omega_{sinc} = \frac{1}{n} \sum_{j=1}^{n} \omega_{i}$$
 assumed = 0 w.l.o.g. Frequency synchronized trajectory = equilibrium $\dot{\theta}_{i} = 0$

Many results available, almost all* avoid complexity of circle manifold by

- Assuming phases initially in a « convenient » set,
- Ensuring they remain in the set during synchronization.

Problem II: Region of attraction?

Convenient set 1: Semi-circle

$$\mathcal{C} := \{ \theta \in \mathbb{S}^n : \exists \delta : \theta_i \in [-\frac{\pi}{2} + \delta, \frac{\pi}{2} + \delta], \forall i \}$$

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\subset\mathbb{R}$$

Convenient set 2: small differences between neighbors ($< \pi/2$)

$$\mathcal{B} := \{ \theta \in \mathbb{S}^n : (i,j) \in E \Rightarrow |\theta_i - \theta_j| < \pi/2 \}$$

Implies « classical » symmetric consensus on frequencies

$$\frac{d}{dt}\dot{\theta}_i = \sum_{j=1}^n \tilde{a}_{ij}(\theta)(\dot{\theta}_j - \dot{\theta}_i) \qquad \text{with} \quad \tilde{a}_{ij}(\theta) = \tilde{a}_{ji}(\theta) \ge 0$$

Problem II: Region of attraction?

Question: For nontrivial classes of weights and natural frequencies, existence of a frequency synchronized trajectory that

- Strong version: is *almost globally* attractive
- Weak version: has a large basin of attraction: not included in

$$\mathcal{B} := \{ \theta \in \mathbb{S}^n : (i,j) \in E \Rightarrow |\theta_i - \theta_j| < \pi/2 \}$$

$$\mathcal{C} := \{ \theta \in \mathbb{S}^n : \exists \delta : \theta_i \in [-\frac{\pi}{2} + \delta, \frac{\pi}{2} + \delta], \forall i \}$$

Specific conjecture:

In the following cases, every *locally asymptotically stable* synchronized trajectory is *almost globally attractive*

- 1) Acyclic topologies: interaction graph is a tree
- 2) Fully connected topology with equal weights: $a_{ij} = \frac{K}{n}, \forall i, j$